Contribution of the Helicobacter pylori thiol peroxidase bacterioferritin comigratory protein to oxidative stress resistance and host colonization.
نویسندگان
چکیده
Peroxiredoxins, the enzymes that catalyze the reduction of hydrogen peroxide and organic hydroperoxides, are ubiquitous proteins that protect organisms from damage by reactive oxygen species. Helicobacter pylori contains three members of the peroxiredoxin family: AhpC (alkyl hydroperoxide reductase), Tpx (thiol-specific peroxidase), and bacterioferritin comigratory protein (BCP). In this study, we characterized H. pylori bcp mutant strains and wild-type BCP. Compared to the parent strain and the ahpC mutant strain, the bcp mutant showed moderate sensitivity to the superoxide-generating agent paraquat and to organic hydroperoxides. Upon exposure of 10(8) cells to air for 10 h, 10(6) wild-type cells survived but none of the 10(8) bcp mutant cells were recovered. Introduction of an intact bcp gene at an unrelated locus in the bcp strain restored the wild-type-like oxidative stress resistance phenotype. Purified BCP was shown to be a thiol peroxidase that depends on the reducing activity of thioredoxin and thioredoxin reductase. Among a series of peroxides tested, linoleic acid hydroperoxide was the preferred substrate of BCP. By examining the profiles of protein expression within H. pylori cells, we confirmed that AhpC is much more abundant than BCP. The overlapping functions and activities of BCP and AhpC probably explain why the bcp mutant displayed a relatively weak oxidative stress resistance phenotype. The bcp mutant strain could colonize mouse stomachs, although colonization by the wild-type strain was slightly better than that by the mutant strain at 1 week after host inoculation. However, at 3 weeks after inoculation, the colonization ability of the wild type was significantly greater than that of the bcp mutant; for example, H. pylori was recovered from 10 of 11 mouse stomachs inoculated with the wild-type strain but from only 4 of 12 mice that were inoculated with the bcp mutant strain. This indicates that H. pylori BCP plays a significant role in efficient host colonization.
منابع مشابه
Dual Roles of Helicobacter pylori NapA in inducing and combating oxidative stress.
Neutrophil-activating protein (NapA) has been well documented to play roles in human neutrophil recruitment and in stimulating host cell production of reactive oxygen intermediates (ROI). A separate role for NapA in combating oxidative stress within H. pylori was implied by studies of various H. pylori mutant strains. Here, physiological analysis of a napA strain was the approach used to assess...
متن کاملAn NADPH quinone reductase of Helicobacter pylori plays an important role in oxidative stress resistance and host colonization.
Oxidative stress resistance is one of the key properties that enable pathogenic bacteria to survive the toxic reactive oxygen species released by the host. In a previous study characterizing oxidative stress resistance mutants of Helicobacter pylori, a novel potential antioxidant protein (MdaB) was identified by the observation that the expression of this protein was significantly upregulated t...
متن کاملInvestigation of VPR2 gene expression in AGS cells transfected with recombinant vector carrier of tagD gene of Helicobacter pyloriExpression of VPR2 Gene in AGS
Backgrounds: Helicobacter pylori is associated with the development of gastric cancer. The thiol peroxidase enzyme, encoded by the tagD gene in this bacterium, plays an important role in bacterial attachment and colonization in the human stomach. The aim of this study was to investigate the expression of VPR2 gene in AGS cells transfected with recombinant vector of helicobacter pylori tagD gene...
متن کاملRole of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori.
Helicobacter pylori possesses two distinct thioredoxin proteins (Trx1 and Trx2) which may play important roles in the ability of this bacterium to survive oxidative stress. Trx1 has previously been shown to be an electron donor in vitro for alkyl-hydroperoxide reductase (AhpC), one of three members of the peroxiredoxin family of antioxidant peroxidases present in H. pylori. In this study, mutan...
متن کاملDiscovering Antioxidant Molecules in the Archaea Domain: Peroxiredoxin Bcp1 from Sulfolobus solfataricus Protects H9c2 Cardiomyoblasts from Oxidative Stress
Peroxiredoxins (Prxs) are ubiquitous thiol peroxidases that are involved in the reduction of peroxides. It has been reported that prokaryotic Prxs generally show greater structural robustness than their eukaryotic counterparts, making them less prone to inactivation by overoxidation. This difference has inspired the search for new antioxidants from prokaryotic sources that can be used as possib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 73 1 شماره
صفحات -
تاریخ انتشار 2005